On eigenvalue problems of $p$-Laplacian with Neumann boundary conditions
نویسندگان
چکیده
منابع مشابه
INFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملBlow-up phenomena for p-Laplacian parabolic problems with Neumann boundary conditions
where p > 2 and is a bounded domain in Rn (n≥ 2) with smooth boundary ∂ . By introducing some appropriate auxiliary functions and technically using maximum principles, we establish conditions to guarantee that the solution blows up in some finite time or remains global. In addition, the upper estimates of blow-up rate and global solution are specified. We also obtain an upper bound of blow-up t...
متن کاملEIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS
In this article, we study eigenvalue problems with the p-Laplacian operator: −(|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp), where p > 1 and πp ≡ 2π/(p sin(π/p)). We show that if ρ ≡ 1 and q is singlewell with transition point a = πp/2, then the second Neumann eigenvalue is greater than or equal to the first Dirichlet eigenvalue; the equality holds if and only if q is constant. The same ...
متن کاملNonlocal Problems with Neumann Boundary Conditions
We introduce a new Neumann problem for the fractional Laplacian arising from a simple probabilistic consideration, and we discuss the basic properties of this model. We can consider both elliptic and parabolic equations in any domain. In addition, we formulate problems with nonhomogeneous Neumann conditions, and also with mixed Dirichlet and Neumann conditions, all of them having a clear probab...
متن کاملinfinitely many solutions for a class of p-biharmonic problems with neumann boundary conditions
the existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous neumann boundary conditions. using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous neumann boundary conditions, we obtain the result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1990
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1990-1010800-9